Reactions of oligodendrocyte precursor cells to alpha herpesvirus infection of the central nervous system

Glia ◽  
1998 ◽  
Vol 23 (4) ◽  
pp. 316-328 ◽  
Author(s):  
Joel M. Levine ◽  
Lynn W. Enquist ◽  
J. Patrick Card
2019 ◽  
Author(s):  
Jinxing Hou ◽  
Huiru Bi ◽  
Gang Zou ◽  
Zhuoyang Ye ◽  
Jing Zhao ◽  
...  

AbstractOligodendrocytes (OLs) and astrocytes play critical roles in a variety of brain functions. OL precursor cells (OPCs) are known to give rise to OLs as well as astrocytes. However, little is known about the mechanism by which OPCs determine their specification choice for OLs versus astrocytes in the central nervous system (CNS). Here we show that genetic inhibition of γ-secretase in OPCs reduces OL differentiation but enhances astrocyte specification. Mechanistic analysis reveals that inhibition of γ-secretase results in decreased levels of Hes1, and that Hes1 down-regulates the expression of signal transducer and activator of transcription3 (Stat3) via binding to specific regions of its promoter. We demonstrate that conditional inactivation of Stat3 in OL lineages restores the number of astrocytes in γ-secretase mutant mice. In summary, this study identifies a key mechanism which controls OPC’s specification choice for OL versus astrocyte during postnatal development. This γ-secretase-dependent machinery may be essential for the CNS to maintain the population balance between OLs and astrocytes.


2013 ◽  
Vol 74 (1) ◽  
pp. 1-7
Author(s):  
Ken Iseki ◽  
Seita Hagino ◽  
Tetsuji Mori ◽  
Yuxiang Zhang ◽  
Nobuko Sakai ◽  
...  

2021 ◽  
pp. 107385842098720
Author(s):  
Yasmine Kamen ◽  
Helena Pivonkova ◽  
Kimberley A. Evans ◽  
Ragnhildur T. Káradóttir

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes which myelinate axons in the central nervous system. Although classically thought to be a homogeneous population, OPCs are reported to have different developmental origins and display regional and temporal diversity in their transcriptome, response to growth factors, and physiological properties. Similarly, evidence is accumulating that myelinating oligodendrocytes display transcriptional heterogeneity. Analyzing this reported heterogeneity suggests that OPCs, and perhaps also myelinating oligodendrocytes, may exist in different functional cell states. Here, we review the evidence indicating that OPCs and oligodendrocytes are diverse, and we discuss the implications of functional OPC states for myelination in the adult brain and for myelin repair.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3549-3560 ◽  
Author(s):  
J.F. Emery ◽  
E. Bier

The Drosophila pan-neural genes deadpan (dpn) and scratch (scrt) are expressed in most or all developing neural precursor cells of the central nervous system (CNS) and peripheral nervous system (PNS). We have identified a cis-acting enhancer element driving full pan-neural expression of the dpn gene which is composed of independent CNS- and PNS-specific subelements. We have also identified CNS- and PNS-specific subelements of the scrt enhancer. Deletion analysis of the dpn and scrt PNS-specific subelements reveals that PNS specificity of these two evolutionarily unrelated enhancers is achieved in part by repression of CNS expression. We discuss the implications of the striking organizational similarities of the dpn, scrt, and sna pan-neural enhancers.


2017 ◽  
Vol 23 (6) ◽  
pp. 627-648 ◽  
Author(s):  
Tianci Chu ◽  
Lisa B. E. Shields ◽  
Yi Ping Zhang ◽  
Shi-Qing Feng ◽  
Christopher B. Shields ◽  
...  

The chemokine CXCL12 plays a vital role in regulating the development of the central nervous system (CNS) by binding to its receptors CXCR4 and CXCR7. Recent studies reported that the CXCL12/CXCR4/CXCR7 axis regulates both embryonic and adult oligodendrocyte precursor cells (OPCs) in their proliferation, migration, and differentiation. The changes in the expression and distribution of CXCL12 and its receptors are tightly associated with the pathological process of demyelination in multiple sclerosis (MS), suggesting that modulating the CXCL12/CXCR4/CXCR7 axis may benefit myelin repair by enhancing OPC recruitment and differentiation. This review aims to integrate the current findings of the CXCL12/CXCR4/CXCR7 signaling pathway in the CNS and to highlight its role in oligodendrocyte development and demyelinating diseases. Furthermore, this review provides potential therapeutic strategies for myelin repair by analyzing the relevance between the pathological changes and the regulatory roles of CXCL12/CXCR4/CXCR7 during MS.


Sign in / Sign up

Export Citation Format

Share Document